MLP-Mixerに関する検証用コード
MLP-Mixerに関して、GitHub – rishikksh20/MLP-Mixer-pytorch: Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Visionにいくつかのコメントを付与したコードを自分用に保存する。
import torch import numpy as np from torch import nn from einops.layers.torch import Rearrange from torchviz import make_dot class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # apply MixerBlock to a patch class MixerBlock(nn.Module): def __init__(self, dim, num_patch, token_dim, channel_dim, dropout = 0.): # num patch is all of patches from a image # num_patch = (image_size// patch_size) ** 2 super().__init__() self.token_mix = nn.Sequential( nn.LayerNorm(dim), Rearrange('b n d -> b d n'), FeedForward(num_patch, token_dim, dropout), # FeedForward(196, 256, 0.0) Rearrange('b d n -> b n d') ) self.channel_mix = nn.Sequential( nn.LayerNorm(dim), FeedForward(dim, channel_dim, dropout), # FeedForward(512, 2048, 0.0) ) def forward(self, x): x = x + self.token_mix(x) x = x + self.channel_mix(x) return x class MLPMixer(nn.Module): def __init__(self, in_channels, dim, num_classes, patch_size, image_size, depth, token_dim, channel_dim): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' self.num_patch = (image_size// patch_size) ** 2 self.to_patch_embedding = nn.Sequential( nn.Conv2d(in_channels, dim, patch_size, patch_size), Rearrange('b c h w -> b (h w) c'), ) self.mixer_blocks = nn.ModuleList([]) for _ in range(depth): self.mixer_blocks.append(MixerBlock(dim, self.num_patch, token_dim, channel_dim)) self.layer_norm = nn.LayerNorm(dim) self.mlp_head = nn.Sequential( nn.Linear(dim, num_classes) ) def forward(self, x): x = self.to_patch_embedding(x) # x.shape > torch.Size([1, 196, 512]) # 196 means num of patches from a image # sqrt(196) = 14 # 224 / 16 = 14 # 512 is dim from a patch i.e. feature from a patch # weight sharering # https://pytorch.org/tutorials/beginner/examples_nn/dynamic_net.html for mixer_block in self.mixer_blocks: x = mixer_block(x) # x.shape > torch.Size([1, 196, 512]) x = self.layer_norm(x) # x.shape > torch.Size([1, 196, 512]) # Global average pooling x = x.mean(dim=1) # x.shape > torch.Size([1, 512]) return self.mlp_head(x) if __name__ == "__main__": img = torch.ones([1, 3, 224, 224]) model = MLPMixer(in_channels=3, image_size=224, patch_size=16, num_classes=1000, dim=512, depth=8, token_dim=256, channel_dim=2048) parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 print('Trainable Parameters: %.3fM' % parameters) out_img = model(img) print("Shape of out :", out_img.shape) # [B, in_channels, image_size, image_size] # for network viz image = make_dot(out_img, params=dict(model.named_parameters())) image.format = "png" image.render("mlp-mixer")
ディスカッション
コメント一覧
まだ、コメントがありません