7月 25, 2020
import os
import glob
import random
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import json
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
# get_ipython().run_line_magic('matplotlib', 'inline')
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision
from torchvision import models, transforms
torch.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)
# VGG16の中間層を抽出することでモデルを構築
class custom_VGG16(nn.Module):
def __init__(self):
super(custom_VGG16, self).__init__()
# 22層それぞれから特徴を抽出
features = list(models.vgg16(pretrained=True).features)[:23]
self.features = nn.ModuleList(features).eval()
def forward(self, x):
# 22層目から特徴抽出
model = self.features[22]
x = model(x)
x = nn.Linear(512 * 7 * 7, 4096)(x)
x = nn.ReLU(True)(x)
x = nn.Dropout()(x)
x = nn.Linear(4096, 4096)(x)
x = nn.ReLU(True)(x)
x = nn.Dropout()(x)
x = nn.Linear(4096, 2)
return x
def main():
model = custom_VGG16()
print(model)
input = torch.randn(32, 3, 224, 224)
out = model(input)
print(type(out))
for x in out:
print(x.size(), type(x))
if __name__ == "__main__":
use_pretrained = True
net = models.vgg16(pretrained=use_pretrained)
print(net)
>>>
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
関連記事
ディスカッション
コメント一覧
まだ、コメントがありません